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Self-amplified coherent spontaneous emission in the planar wiggler free-electron laser
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Coherent spontaneous emissi@SE is a potentially important self-generated source of seed radiation in a
free-electron lase(FEL) amplifier. A model is derived that describes CSE at the fundamental resonant fre-
guency and its harmonics in a planar wiggler FEL. The subsequent self-amplification of the CSE is investigated
in the nonlinear regime for a FEL amplifier configuration.
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[. INTRODUCTION propagation direction of the wiggler axig]. On-axis inter-
action at harmonics may therefore be neglected in the helical
In a single pass free-electron las@tEL) amplifier the  wiggler. In contrast, in a planar wiggler configuration, sig-

radiation to be amplified may be classified into three distinchificant on-axis radiation emission at harmonics of the fun-
types: radiation from an external coherent source such as @gmental may occur and the radiation-electron interaction at
laser; the spontaneous emission arising from the shot noise these harmonics may not be neglectét
the electron pulse; and coherent spontaneous emigSiBB Previous work has calculated the CSE from an electron
arising from current gradients in the electron pulse. The lattepulse traversing a planar wiggler directly from the haed-
two types are currently the only sources of radiation avail-Wiechert potential$8] . Whereas, this work provides infor-
able for FEL amplification in regions of the spectrum wheremation of the CSE both on and off axis, it does not describe
there are no external laser sources of sufficient power and/dhe radiation-electron interaction in the self-consistent way

coherence, e.g., in the vacuum ultraviolet and x ray. required to describe the stimulated emission due to the FEL
FEL amplification of spontaneous radiation has beermmechanism.
termed self-amplified spontaneous emissi@ASE [1,2] The evolution of the self-consistent interaction between

and amplification of coherent spontaneous radiation selfthe electron pulse and the radiation field is described in this
amplified coherent spontaneous emissi@ACSE [3,4]. paper via the coupled Maxwell-Lorentz equations. The elec-
When electron pulse current gradients are sufficiently large itrons interact with the radiation and static wiggler fields,
has been predicted that SACSE can easily dominate thieir position and momentum evolution being described by
SASE interaction in an FEL amplifier. This dominance hasthe Lorentz force equation. The electron motion in the wig-
already been demonstrated experimentally in the Cherenkayler constitutes a current that acts as a source of the electro-
maser|[5], a device with significant similarities to the FEL. magnetic field, the evolution of which is described by Max-
Because the initial radiation source in the FEL SASE regimewell’s wave equation. The on-axis harmonic radiation in the
arises from noise, the radiation pulse structure following amplanar wiggler is due to an oscillatory axial “jitter” motion
plification may also exhibit a large degree of noise. Conseeof the electrons about their mean velocity as they propagate
guently, pulse to pulse reproducibility also suffers. In thealong the wiggler axi$7].
SACSE regime, however, the initial radiation source is de- To date, most analytical studies of the FEL have involved
termined by the temporal current profile of the electronthe averaging of the Maxwell-Lorentz equations over an in-
pulse. The amplified radiation in SACSE will therefore beterval equal to or greater than one wiggler pelfig]. This
intrinsically less noisy and exhibit greater pulse to pulse staaveraging restricts the resolution of solutions to the system’s
bility [4]. Thus, the SACSE regime of operation may beevolution to time and spatial scales that are greater than the
beneficial to users of short wavelength FELs, where radiatiofundamental radiation period. As SACSE is a process that
pulse noise and pulse to pulse stability may be an issue afan only be described with reference to scales less than this
experimental importance. period, the above averaging of the Maxwell-Lorentz equa-
This paper presents what the authors believe is the firdions destroys any information of SACSE in their solution.
one-dimensional analysis of SACSE in a planar wiggler FEL In the work presented here, no averaging of the Maxwell-
amplifier. The analysis extends previous studies of SACSE.orentz equations is performed, allowing for a more accurate
that were carried out for helical wiggler configurations only description of the FEL's evolution by including the effects of
[3,6,4]. Given the importance of including the effects of CSE SACSE. Because the Maxwell-Lorentz equations are not av-
in helical wiggler FEL configurations, it would seem timely eraged, the transverse electron dynamics are described in dif-
to investigate the role of CSE in the planar wiggler FEL ferential form. Furthermore, the radiation is described di-
configuration, particularly as this is the preferred type ofrectly via its oscillatory field and not by the field envelope as
wiggler for most of the Compton regime FEL experimentsin the averaged model. The more complex system of equa-
and user facilities. tions in this unaveraged model is the price to be paid for
In a helical wiggler configuration there is no resonant ra-obtaining the extra information of sub-radiation period
diation emission at harmonics of the resonant fundamenteésACSE evolution.
radiation frequency along the coaxial radiation-electron The following work begins with the coupled Maxwell-
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Lorentz equations from which the working system of equa-/ ;2 ¢ 42\ = _ 2 4]
tions used to model SACSE in the planar wiggler FEL are| — — — — > [&(zt)ef kol L cc]= 5 —=.
derived in detail. These working equations are scaled using 9Z° €~ dt°/ =1 o’

the same scaling as previous averaged modgiso allow )
for easy comparison. The equations are then solved in th\?/here

absence of any radiation interaction upon the electron dy-

namics. This allows an expression to be derived for the CSE N

from an arbitrary electron pulse current profile. This expres- J=—ecy, Bx(z—1z;(1)). (6)
sion is then used to investigate and compare the scaling of =1

CSE and spontaneous radiation intensity as a function of
frequem_:y. Th_e working equations are then sol\_/ed UM o hient form by changing to the scaled independent variables
cally to investigate the radiation/electron interaction into the[g]_
nonlinear SACSE regime for two different electron pulse-™"
current profiles.

The wave equatiori5) may be rewritten in a more con-

2kyp

(z—cByA). @)

7=2kypz, 7=
IIl. THE MODEL — B,

In what follows we consider the interaction between aHerecEf(sz) is the initial mearz component of the elec-

pulse of electrons of mean energymc?, resonant with a  qp velocity within the interaction region anglis the fun-

plane, linearly polarized radiation field in a planar wiggler yamental FEL parametét], defined as
FEL configuration. The electric field, the wiggler magnetic ’

field, and the transverse current density are given, respec- 1 (ava)z/a
tively, as =— , 8
y P=31 ack, 8
E(z,t)=XE,(z,t)= %;(E [E(z )tz o ¢ c], where w,=(e’n,/e;m)*? is the plasma frequency for the
f=1

peak electron number density of the electron putge, The
1) left-hand side of wave equatiofb) then transforms, using
the independent variabl€g), to

Bu(2)=—YBysink,z, ) _ _

N 8p2 2 B (i J ) J 1-5;
22 | — || =+——=
3 =—ecX B aC—r(b), 3 1=p.\0z om/lon 25,
=1 w
(9 . i —_
1120) (22—
whereN is the total number of electrons in the pulse with X(a_;JF &?1) ]le [E1(z,z)el") B Drcc]. (9

positionsr(t) and transverse velocitg, , B,, is the wig-

gler magnetic field strength of periad,=27/k, and the |t s easily shown from Eq(9) that when
radiation electric field has been expanded as a sum of com-

plex harmonic field envelopes of the fundamental resonanty — g, | 9&,(z,z,)  9&(z.z;) if  — 9&(z,z9)
wave vectork;=2m/\ 4, where = —+ ——— | <|5&(,z) +————,
283, 0z 924 ‘ 2p Jz;
. (10
=—>(1+
M 275(1 %), or equivalently
w1=Ccky, andngeBW/\/EmckN is the rms wiggler deflec- 9E(Z.1) +(7€f(z’t) < &Exf(z't)’1 (12)
tion parameter. 0z cat | cot
- ) the partial differential term
A. Radiation evolution
For such a plane wave interaction the field evolution is 1—@( d N d )
described by the wave equation, ZEZ iz (9?1
#? 1 9 3, . —
— = — |E=po—. (4) may be neglected with respect #6yz; in the second brack-
9z>  c? gt? at eted differential term of Eq(9). Inequality (11) is satisfied

o _ ~when the radiation envelogg(z,t) varies slowly as a func-
SUbStltUtlng for the harmonic sum form of the electric field tion of (Z— Ct) relative to the radiation field rate of Change_

(1), assuming the electron and radiation pulses have equ@lence,&;(z,t)~&(z—ct) is a field envelope that does not
cross-sectional areas, and taking the scalar product with ~ change significantly in a radiation period, and consequently
the wave equatiofd) may be written: disallows any valid description of a radiation field counter-
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propagating to the electron pulse. This analysis is similar to

that of Ref.[10]. With this approximation the wave equation
(5) may be written as:

Jd
iz

[

= Z [£(z,2)el"29 @D ¢ ¢ c)
)2

J
—t+ =
0z

12

+ .
ZEOCO'pkWJX

The general solution for the bracketed term differentiated

with respect t(;1 in Eq.(12) is equal to a general function of

z plus a constant. It can be seen from the zero source limit

(Jx—0) that both the general function afand the constant

must be set equal to zero for energy and momentum conse
vatlon Thus, the bracketed term differentiated with respec

to zl in Eq. (12) itself is equal to zero and we obtain

(a e g B,
—_— 1t = XZ’Z =
9z 97y Y 2egmeo 1,
><2 P -2 (@). (13
YiPzj

where we have reverted back to the simple radiation electric

field via Eq.(1), introduced thex component of the electron
momentap, in the definition of the current density) and
transformed the Dirac delta function,

8(z—z(1))= 2kwp1fz

8(z,—2,4(2))
sz .

z

The magnetic component of the electromagnetic field ma

be obtained from the Maxwell equation,

JE,
9z

JB,

at’

which, using the same approximatighl) as used in the
wave equation above, may be written

(14

B. Electron evolution

The equation governing the electron motion in the com-

bined wiggler magnetic and electromagnetic fields is the Lor-

entz force equation

an_
dt

o E+—LxB|.
m

Y

Substituting for the field$l),(2),(14), and defining the vari-
ables:

(19

pXJ 'yJﬂXJ ) (16)
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1_,32j
=— 1
eQ] B., (17)
_—
=1r (18)
Bz
_ ek, (19
\/Emcpr')’rP,
2
2
ﬁ”) , (20)
aW
fﬂe Lorentz equatiofil5) may be written in the convenient
orm
dE(J a.W ( ;

- sin +eQ;aAl|, 21
dz \/—p éQja (22)
de gw px1 { ’_( ?)

e 2 sin —
iz vz ooz,
€Q:{3sin —|—
i 2p «
+€e?Q7) si Z_ A 22
€°Qj sin 5 @ . (22

These equations are exact within the approximatidn that
allows the electromagnetic component of the magnetic field
to be written as Eq(14). The scaled arrival time of an elec-

¥ron at scaled positioz is given by zy;(z). The equation

governing this variable is found from E¢) to be

—=1-Q;=2pp;, (23

where the last equality is introduced to allow comparison
with previous models for CSE in a helical wiggler FIER].
When averaged over a fundamental radiation period, and in
the relativistic limite<1, Eq. (22) gives rise to the usual
“pendulum equation” description of the evolution of an elec-
tron in the combined wiggler/radiation field. At the funda-
mental frequency f(—l) the ponderomotive potential so

formed has a period iz; of 47p. Note also that the field
variable A is of the same scaled form as in RE8] when
interpreted as an rms value.

In the absence of the radiation field=0, the equations
are easily integrable and we obtain the usual solutions for an
electron trajectory in a planar wigglgr], which in terms of
the variables used here are

z
2p)’

(24)

Pyi= \/2awcos<
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1"'25\2/\/ cosz(ZZp) -12 I1l. ANALYSIS
€Q=|1- y; -1 A. Coherent spontaneous emission
j
- _ In the relativistic limit and in the absence of radiation
~ 1+2ay,cos(z/2p) ) fields the trajectory of an electron through the wiggler is
- 22 ' (29 found from Eq.(23) and Eqs.(25),(26) to be
j
- z
— 2\y-1_ [ 2a 1+aj, zlj(z)mzle—Zpgsin<j), (29
B,=— Ei| 57— |~1- . (20 p
T M -1 2y

herez. n=z..(z=
whereEi(x) is the complete elliptic integral of the second wherez,=2,,(2=0), and

kind and the latter two approximations are in the relativistic 2
limit , ;>1. (= ———. (30
The equationg21)—(23) are amenable to a perturbation 2(1+E§V)

expansion in the parameterin the relativistic limit where

e<1. This has been carried out and results of numerical Substitution for Eq(29) into the wave equatio(28) al-
integration of the resultant first order equationseirwere  lows the equation of the field generated by jheelectron to
compared with the results of a numerical integration for abe written as

planar wiggler model averaged over a wiggler period, again

in the relativistic limit and for a constant amplitude radiation d d

field. Both models are in excellent agreement. One immedi- a—?JF ; Aj(z,z)

ate approximation that can be made by inspection in the 1

relativistic limit e<1, is the neglect of the last term of Eq. Z\1 [ [ 7

(22). For the purposes of this paper, little advantage is de- =cog 5~ n:& 2,—| 350~ 2pZ sin o)
I

rived in reproducing the perturbation expansion and we use
Egs. (21)—(23) as our working equations for the electron (31)
interaction with the combined radiation/wiggler fields.
Applying the Laplace transform
C. The scaled coupled model

Introducing the scaling of the previous section into the "Aj(zs)zﬁ{Aj(?zl)}: JxAj(?zl)e‘s;ldz, (32
wave equatior(13) we obtain 0

d bl — 1 N E(J- with boundary condition given bx,\j(?zlzo):O, yields
—+ = |A(2,2;)== =
dz 9z, Ny v2ay i=1 1+pj; . . o
Y. z ) —s[z1i0—2p¢ sin(@p)]
> o () — +SA == — 1j0~ 2P Pl
X \eQ)(€Q;+2) 821~ 21)(2)). PR nICOS( 5/ (33
27

This equation may be solved with the initial condition
Assuming the relativistic limity, ;>1 and substituting for Z\j(;: 0,5)=0, to obtain
solutions from(24)—(26) we obtain
_ N ~ — _ —
- z\1 - Ai(z,9)= Ai:(z2,5), 34
A(z,zl)=005(—)= > 81— 2(2)). i(29) f>§0,:odd j1(2:3) 34
2p nyi=1

g 9
__+ p—
9z 9z,

(28)  where

This equation describes an electron-radiation coupling in .
which the radiation field is driven by _the trar)sverse motion "Ajf(zs): _ ':p[a_(s)(ei(f?/zp)_e—s?) _a+(5)(e—i(f?/2p)
of the electrons induced by the wiggler field only, and n
changes in energy of the electrons away from resonance do _ _
not affect the strength of the electron coupling to the radia- —e %% ]e i, (35
tion field.

Together, Eqs(21)—(23) and Eq.(27) form the coupled and
set of differential equations describing the self-consistent
electron-radiation evolution in a planar wiggler FEL. These  g.(s)=(—1)(~172
equations are valid under the plane wave and the slowly . .
varying envelope approximation of E¢L1) or equivalently ><[‘](f—l)/2(+'2P§5)_J(f+1)/2(+'2953)]
Eq. (14). f*xi2ps
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In deriving this result the following Bessel function identities

were required:

gia sinx— kz Jk(a)eikx, J_p(@)=(—1)"J,(a),
Jn(—a)=(— 1)an(a)'

The expressiofi35) is the Laplace transform of thgh (odd)
harmonic contribution to the field from theh electron. The

PH'SICAL REVIEW E 65 046503

Tr=(= D36 ()= ey FOT.

Finally, the total scaled radiation field is obtained by sum-
ming over all odd harmonic contributions

Azz)= 2 Alz2z)).
f>0,0dd

Note from Eq.(7) for the definitions ofz andz,, that for
a given electron pulse shape and width, the limits of the

derivation of the final result is assisted by now calculatingintegral in Eq.(38) are p independent, so thgdi\¢|?«p?.

ﬂf—the Laplace transform of thigh (odd) harmonic contri-
bution to the field for the sum of the entire distributionNf
electrons in an electron pulse of scaled duratiom,irof |
=2pwAt., whereAt, is the temporal duration of the pulse.
We begin by describing th&l electrons by a continuous

Hence, from the scaling8) and(19), the unscaled radiation
intensity for thefth harmonic is proportional to the square of
the electron beam density, i.e., the harmonic CSE is superra-
diant[9].

The field (38) is similar in form to that of CSE from a

charge distribution. In the limit of a continuous charge dis-helical wiggler[3] for the fundamental frequencl/=1. The

tribution, z,;, is replaced by the dummy variab# and the

sum over theN electrons may be replaced by the integral

over the charge weight function(z;)=1(z=0z))/1y,
wherel (z=0,z;) is the electron pulse current with maximum

main difference being the Bessel function factr, familiar

to planar wiggler FEL theor}7] and describing the reduced
coupling of the radiation field to the electrons due to the
latters’ axial oscillatory motion as described by E29). The
exponent of the exponential term outside the integral in un-

value I, on entering the wiggler. Hence, the sum of thescaled variables is simply the harmonic field’s phase

discrete electron model becomes

1 N
> (-
=1

n i

e @

in the continuous charge distribution limit, the lower limit on
the integral being zero ag;j=0V]j.
In this way we obtain

Ai=ip[g.(s)(e™ (22— 757 G _(s)(e/(1220)

—e %] f x(Z)e *Adz,. (36)
0
Note that the integral term is simpl&){x(é)}, the Laplace

transform of the charge weight functiof(z,). The Laplace
transform convolution theorem

- o~ 74 _
£ Hf(s)9(s)}= Jolf(U)g(zl—U)du (37)
may now be applied to Eq36) by associating the functions
9. (s) with g(s) in Eq. (37) and noting the simple poles of
9. (s) for inversion. Using the Laplace shifting theorem

£ Ye S L{x(z)}=x(z:- DH (2.~ 2),

where H(x) is the Heaviside function, allows thih odd
harmonic field component to be written as

Ai(z,21)=pJ;

a-ilf(z-2)/20] f /2
(z1-2)12p

ey (0)do+ c.c.}
(39

where the transform— 2p 0 has been made in E¢37) and

—if(kyz— w4t). It should be noted that the Bessel function
factor 7; arises in previous theory as a consequence of av-
eraging the equations over a wiggler period. However, no
such averaging was performed here.

A radiation wave front propagates relative to the electron

pulse with a scaled velocitgi?lldz=1. Hence, at a scaled
position z and timez,;, only those regions of the electron
pulse that lie within the interval irz; betweenz; and z;

—z may contribute to the radiation field. This is the physical
reason for the limits of the integral over the charge weight
function x(0) in Eq. (38). If these limits are incorporated as
a difference of Heaviside functions within the integral, as in
Ref.[3], then the integral may be written as a Fourier trans-
form of the product ofy(#) with the difference of Heaviside

functions. Forl <z, <z, then the integral is simply the Fou-
rier transform of the charge weight functige{ 6).

For example, in this latter region, and for a rectangular
charge weight function:

x(z;)=1 for 0<z;<l,
=0 otherwise, (39
the harmonic field component
—— 2 .f(Z—Z) .(f(i—?—m
Af(z,zl)—ij{sm( 2 —smT .
(40)

The factor 1f may be attributed to the electron pulse appear-
ing effectively f times longer to the harmonic than to the
fundamental frequency. Hence, the Fourier components of
the pulse weighting functiog(6) driving the harmonic field
are reduced. It is easily shown that this scaling also applies

outside the interval .<z,<z. The total scaled fieldA is
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FIG. 1. The scaled field amplitud® plotted as a function of; 107 — . 1 . . 2
for a rectangular charge weight functigufz,) and for parameters 1 3 5 i 7 ° B

a,=1, p=0.0796, | ,=3.2, andz=5.8. _ S N _
FIG. 2. The relative radiation intensiti&% plotted as a function

plotted for a rectangular charge weight function of scaledof harmonic numbef for a,,=1. O, Shot noise:X, a rectangular
durationl_9= 3.2 at scaled pOSitiOE= 5.8 over the entire charge weight function; andr, a parabolic charge weight function.
range 0<z,<|+z in Fig. 1. )

Similarly, in the regionl .<z;<z, for a parabolic charge Rsp:f T
weight function defined by g2

(45

The latter expression has been derived from the expression
for the on-axis spontaneous shot noise photon flux attine

harmonicS; [11],

_ 4_ . _ _
)((Zl)=—|_—221(21—|e) for O<Zl<|e
e
=0 otherwise, (41
d’s; o dA; Lol

the scaled harmonic field is given b -— =aN2+2"— _F.(a.
given by dpdy oy dgdy  Nwvi o gFi@w, (48
f(zy—z—1 f(z,—2) . .
cos( (Zl—ze)) +cog< (Zl—z)> . where ¢ and ¢ are the vertical and horizontal angles from
2p 2p the wiggler axis,« is the fine structure constariy, is the
(42)  number of wiggler periodsA w/w= 1/fN,, is the fractional
linewidth, | is the electron beam current, and

16p2

2,2)=~ =7,

A
f 12 f

—~

In deriving Eq.(42) it has been assumed that the electron

pulse length is sufficiently long, i.el_e>47rp/f. This rela- o 2222
tion h.oI(Ijs for e_Iectron pulse lengths significantly longer than Fi(a,)= %?ﬁ
a radiation period. (1+ay)
A relative measure of harmonic intensity is obtained from o o
the ratioR;=1/1, wherel is the intensity of thefth har- The relative intensities for both CSE, from a rectangular

monic. For the rectangular charge weight distribution of Eqand & parabolic pulse, and spontaneous shot noise emission
(39) and for given values op andgw then from Eq.(40) are plotted in Fig. 2 as a furEtlon of harmonic numbfar a
wiggler deflection parametex,,=1. It is seen that the rela-

J? tive intensity of CSE decreases significantly more rapidly
RS rectangular= 5 (43 than spontaneous shot noise with increasing harmonic num-
LV ber, and that CSE of the parabolic decreases more rapidly
Similarly, from equation(42) for a parabolic charge weight than the rectangular.
distribution
B. Self-amplified coherent spontaneous emission
RCS parabolio = «7? (44) The full set of coupled equatiorf21)—(23) and Eq.(27)
PP B f‘ﬂﬁl are now solved self-consistently into the nonlinear regime

and demonstrate that CSE may be amplified as it propagates
An equivalent expression may be obtained for spontanethrough the electron pulse—self-amplified coherent sponta-
ous emission due to shot noise, and which is valid for anyneous emission. Such an analysis has previously been carried
pulse charge weight distribution, out for a helical wiggler configuratiofi3] where only the
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FIG. 3. The scaled field as a function ogl; the scaled power FIG. 4. The scaled field as a function of,; the scaled power

spectrunP as a function of the scaled radiation frequefiggnd the ~ SPectrumP as a function of the scaled radiation frequeficand the

bunching parametdb| as a function oEl for a rectangular charge bunching parametdb| as a function of; for a rectangular charge

weight distribution functiony(z,). The scaled distance through the weight distribution functiony(z). The scaled distance through the

wiggler is z=2 anda, =2, y,=100, p=10"2, 1,=40 and the Wiggler is z=25 anda,=2, =100, p=10"2% 1,=40 and the
total electron pulse charge@=2 nC. The relative radiation inten- t0tal électron pulse charge@=2 nC. The relative radiation inten-
sitiesR; are plotted in the scaled power spectrBras a function of sities Rf_are plotted in the scaled power spectrBras a function of
harmonic numbef for: O, Shot noiseX, CSE. harmonic numbef for: O, Shot noiseX, CSE.

fundamental frequency of the radiation field is present an&harge weighted bunchmg paramekb}' are plotted at wo
there is no axial jitter motion of the electrons. This allows theScaled interaction distances- 2 andz=25 through a planar
radiation field to be described by a complex pulse envelopé""ggler interaction region for a rectangular electron charge

The streamline method of finite element analysig] was ~ Weight functiony(z;). The parameters used for this simula-
used to model the evolution of the radiation pulsejnwith ~ tion were:a,=2, ¥, =100, p=10- 2, 1,=40, total elec-

iteration forward inz being governed by a Crank-Nicolson {ron pulse charge 0Q=2nC, and inital field amplitude
schemd13]. The radiation pulse was driven self-consistentlyA(z=0,z,) =0. Shot noise, associated with the random elec-
by the electrons whose dynamical equations in the presendgon distribution, was included in the model via the method
of the radiation pulse were solved by a Runge-Kutta routinedescribed in Ref[14] so that both noise and CSE sources
The method used to solve the system of equati@is— were available for amplification. The bunching paraméter
(23) and Eq.(27) describing the planar wiggler is essentially is similar to the bunching parameter as defined in previous
the same, except the solutions for a résdaled radiation  averaged models’] and is defined as
field, not a complex envelope, and the transverse dynamics

of the electrons must also be modeled via the equations for D aiz1j/2p
_. Xj
Px - —
Two sample solutions are now presented. The first is for a b(z,z))= ———
rectangular electron charge weight function, as described by 72 Xi
Eq. (39 of the previous section, and the second is for a zjel

parabolic charge weight function given by Hdgl). _ . — _
In Figs. 3 and 4 the scaled radiation field amplitéde¢he ~ Wherel" defines an interval iz, of one ponderomotive pe-
log of the scaled power spectrum and the modulus of the riod at the fundamental frequencg;y—2mp<z;,<z;+2mp
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and Xj:X(?le)- The parametef = w/w4 is the radiation x 10
frequency scaled with respect to the fundamental. For elec-

trons distributed at the same position withifi, z;;

= constan¥j and|b|=1. Conversely, for a uniform distri- -5
bution of electrons within the intervdl, |b|=0. Hencelb|
is bounded by the intervalQ|b|<1.

In Fig. 3, atz=2, it is seen that there has been little
evolution of the field,A, except for the emission of CSE. 0 10 20 30 40_50 60 70 80
(Note that, unlike Fig. 1, the periodic oscillations of the field . Z
are unable to be resolved in this plot, the period being ap- 10
proximately that of a ponderomotive potentiatrd~0.13. .
The solid shaded areas of the plot therefore delineate the 10
envelope containing the field oscillationsn the plot of the a
bunching parameter it is seen tHat—1 as the interval’

passes through the electron pulse edge;lato and?l

-10

=40. This occurs when the intervdl spans the electron N
pulse edge, only a fraction of the interalis populated by 10 0 1 2 3 4 5 6 7 8 9 10 11
electrons. This nonuniform distribution il results in a f

bunching |b|>0, which, together with the large charge 1 —

weight associated with a rectangular pul38), gives a large
current gradient that is the source of the CSE. The scaled
distance ofz=2 through the wiggler is relatively short with 8 05

respect to the FEL instability and little radiation amplifica-
tion or electron bunching induced by the FEL interaction has

occurred. Hence, the CSE has not yet been amplified and the 0 L
numerically calculated field is in very good agreement with 0 10 20 30 40_ 50 60 70 80
the analytical analysis of the previous section. Note that z,

there is a small contribution from the shot noise, which is .
apparent from a small noise signal in the field between 2 FIG. 5. The scaled field as a function of;; the scaled power

<2,<40. The dominance of the CSE contribution over thatSPECuTP as a function of the scaled radiation frequefiggnd the
of shot noise is confirmed from the scaled power spectrumPunching parameteb| as a function ofz, for a parabolic charge
where the harmonic intensity ratid®;= /1, for both CSE  weight distribution functiony(z;). The scaled distance through the
and spontaneous scaling as given by equatiéBsand(45)  wiggler is z=2 anda,=2, y=100, p=10"2, 1,=40 and the
are also plotted. Herlg is that measured from the peak value total electron pulse charge @=2 nC. The relative radiation inten-
of the scaled power spectrumfat 1. The peak values in the sitiesR; are plotted in the scaled power spectrBras a function of
scaled power spectrum at the odd harmonics clearly conciffarmonic numbef for: O, Shot noise;+, CSE.
with the CSE scaling. It can be seen from the plot for the
field, A, that temporal structures exist on a scale significantly=0, where the current gradient is largsee above This
|0nger than that of the fundamental radiation periOd. This iafadiation then propagates through the electrons being amp"_
also apparent from the plot of the scaled power spectrunfied and narrowing in width as it does so. Accordingly, this
where there exist significant contributions to the spectrunemission has been called SACEH. A notable feature of the
for f<1. This coherent emission at frequencies lower tharscaled power spectrum is the retention of the CSE scaling of
the fundamentalf =1 is to be expected: in the limit where the harmonic intensity ratioR; well into the nonlinear re-
the radiation period is significantly greater than the electroryime.
pulse duration, the electron pulse appears pointlike and all The simulation for the parabolic charge weight function
electrons emit coherently at that frequeriéy. uses identical parameters to those of the rectangular above.
Figure 4 plots the same parameters as above for a greatg¢he following plots the same information as the rectangular
distance through the wiggler=25. The initial fields gener- case. As with this case, it can be seen from Fig. 5 that at the
ated via shot noise and CSE have now grown Significantly aseginning of the interaction, a?: 2, there are tempora|
has the electron bunchingp| throughout the body of the structures present in the scaled fidddwith period signifi-
electron pulse. The dominant feature of the radiation field igantly longer than the radiation period. This again manifests
the presence of a large spike fgr=22. This feature has also itself with significant power present in the scaled spectrum at
been predicted in helical wiggler FELS8,4] and has been frequencies below the fundamentdk(1). There is no no-
experimentally observed in a Cherenkov maser so{fs¢e table presence of any CSE, however, and higher frequency
which has many similarities theoretically to the FEL. The emission appears mainly in the form of shot noise. It is easily
origin of the spike, which is superradiant in nat{igg, is in ~ shown from Eqs(40) and (42) that the fundamental CSE

CSE emitted from the rear of the electron pulse, aromnd intensity from the parabolic pulse is a factorp08l—e)2~4
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as differing harmonic growth rates, at least in the linear re-
gime[7]. The CSE-like scaling44), resulting from the nu-
merical analysis, however, suggests that the mechanisms that
lead to CSE may also play an important role in the nonlinear
regime of SACSE.

-

. : : v : . : : v IV. CONCLUSIONS
0 10 20 30 40_50 60 70 80
z Analytical and numerical studies of CSE and its amplifi-

cation (SACSB in a planar wiggler FEL in the one-

dimensional1D) plane wave limit have been presented. This

is, to the authors’ knowledge, the first such analysis for a

o planar wiggler FEL. The main difference between the planar
10° and helical FEL amplifiers is the resonant on-axis harmonic
radiation emission and amplification present in the planar

5 wiggler and absent in the helical. In deriving the results, no

1
o o o o
A
10 0 1 2 3 4 5 6 7 8 9 10 M averaging of either the wave equation or the equations gov-
f erning the electrons’ dynamics was performed as such aver-
aging destroys CSE effects in the analysis. In the unaveraged
equations the axial electron “jitter” motion associated with
planar wigglers, and responsible for the on-axis harmonic
emission, is allowed to evolve self-consistently with the ra-
diation. This requires an extra differential equation, for the
transverse momentum of each electron, above those of the
averaged model.
30 40 50 60 70 80 Within the 1D plane wave assumptions, only one approxi-
z mation was made in the derivation of the working equations.
1 This may be written in the convenient form that relates the

FIG. 6. The scaled field as a function oEl; the scaled power radiation me}gnej[ic f!eld Only to its electric ﬁelB:},’: Ex/c.
spectrun as a function of the scaled radiation frequefignd the 1 hiS approximation is equivalent to the SVEA, i.e., that the
bunching parametdb| as a function of?1 for a parabolic charge radiation field envelopg Cppropagf’:ltlng W'th. the elegtron
weight distribution functiony(z;). The scaled distance through the pul_?ﬁ may |nOt. chafmgr]]e significantly In one rhadlatlon perloc:c.
wiggler is 7= 25 anda,—2. 7,—100, p=102, T,—40 and the he ana_y5|s|o the Wallve equation |? r e prese_ncef 0] ha
total electron pulse charge @=2 nC. The relative radiation inten- noninteracting electron pulse gave a useful expression for the

sitiesR; are plotted in the scaled power spectrBras a function of CSE field. It is worth remarking that from this analysis
rarep ) P ) P emerged the difference of Bessel functions factor, familiar to
harmonic numbef for: O, Shot noise+, CSE.

previous averaged planar wiggler models where it arises
. _from the averaging process itself. It has been shown here,
X10"" smaller than from the rectangular pulse. The domi-therefore, that the difference of Bessel functions factor is not
nance of the shot noise over CSE is confirmed from the product of the averaging process but occurs at a more fun-
scaled power spectrum, with harmonic power rafpscon-  damental level. The analysis has shown that CSE powers
forming to the spontaneous shot-noise scali@@). Al-  decrease at a significantly higher rate with increasing har-
though, as with the rectangular pulse, the bunching parammonic number than those powers due to spontaneous shot-
eter |b| is large at the pulse edges, the charge weightingoise radiation. This is of no great surprise when one con-
function here is small. In changing from a rectangular to asiders that it is the change in the pulse current over a
parabolic charge distribution function, therefore, the currenfyavelength that acts as a source of the CSE. The higher the
gradients that drive CSE have been reduced so that sh@rmonic, the smaller the change in current over its period
noise becomes the dominant emission process. and hence the smaller the source term driving the CSE at that
Plots of the same parameters into the nonlinear regime aiarmonic.
z=25 show from Fig. 6 that a spiking behavior in the radia- It is remarkable that the same relative scaling of the har-
tion field is beginning to form in a way similar to the case of monic powers persists well into the nonlinear regime. It
a rectangular charge weight function of Fig. 4. Perhaps thevould also appear that the CSE scaling occurs in the nonlin-
most significant point to note is the transition of the har-ear regime independently of whether the greater source con-
monic power ratiofR; from that of shot-noise scalingb) to  tribution is CSE or shot noise at the beginning of the inter-
a scaling more like that of CS&4). Analytic analysis of the action. This is perhaps indicative that the mechanisms that
equations governing the radiation/electron interaction intayive rise to CSE retain their importance in the nonlinear
the nonlinear regime is not trivial and the scaling expectedegime and warrants further investigation.
for R; in this regime has not been derived. The nonlinear Other attributes of planar wiggler SACSE have many
regime scaling clearly depends on other factors though, sucsimilarities to those of a helical wiggler. Planar wiggler

1

[b|

0.5}

0 10 20
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SACSE is superradiant and pulses of CSE generated towartiglly bunch the electrons at the intermediate energy resonant
the rear of the electron pulse may propagate through it beingravelength where there would be conventional laser sources
amplified and forming a spike of radiation with intensity to provide a well defined, intense seed fie{(@ne would
much greater than the saturation intensity predicted by therobably wish to limit this process by maximizing the ratio
steady-statécw) limit. of bunching to energy spreafh|/{y), so induced. One can
One of the great potential benefits of CSE is that it offersalso envisage schemes that would bunch and then “cool” the
the possibility of a seed field with powers significantly electrons at this intermediate stagBurther acceleration of
greater than those due to shot noise. A further beneficial difthe electron pulse will increase the resonant frequency of a
ference of CSE over shot noise is that the CSE radiatioffinal wiggler stage. In this wiggler the electron pulse current
pulse structure may be predetermined by suitably preformingvould have periodic modulations induced by the previous,
the electron pulse current. The SACSE will then form a welllower energy FEL interaction. Although these modulations
defined amplified pulse with a reproducibility determined bywould be at a frequency below that of the resonant radiation,
that of the electron pulse current as it enters the wiggler. Thithey may nevertheless act as a well defined source of CSE
method offers a possible solution to the problem of pulse tawith an intensity above that of the shot noise.
pulse reproducibility in short wavelength FELs. The key to
Sl_Jch a s_u<_:cessfu| scheme_is in preforming the eIe_ctron pulse ACKNOWLEDGMENTS
with sufficient current gradients so that CSE dominates shot
noise. For example, it may be possible to make the electron One of us, B.W.J.M., is very grateful to Lachlan McNeil
pulse undergo a FEL interaction at an intermediate stage ifor helpful discussions. The authors would like to thank the
their acceleration to high energy. This interaction would parEPSRC for funding this work.
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