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Self-amplified coherent spontaneous emission in the planar wiggler free-electron laser
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~Received 5 December 2001; revised manuscript received 15 January 2002; published 3 April 2002!

Coherent spontaneous emission~CSE! is a potentially important self-generated source of seed radiation in a
free-electron laser~FEL! amplifier. A model is derived that describes CSE at the fundamental resonant fre-
quency and its harmonics in a planar wiggler FEL. The subsequent self-amplification of the CSE is investigated
in the nonlinear regime for a FEL amplifier configuration.
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I. INTRODUCTION

In a single pass free-electron laser~FEL! amplifier the
radiation to be amplified may be classified into three disti
types: radiation from an external coherent source such
laser; the spontaneous emission arising from the shot nois
the electron pulse; and coherent spontaneous emission~CSE!
arising from current gradients in the electron pulse. The la
two types are currently the only sources of radiation av
able for FEL amplification in regions of the spectrum whe
there are no external laser sources of sufficient power an
coherence, e.g., in the vacuum ultraviolet and x ray.

FEL amplification of spontaneous radiation has be
termed self-amplified spontaneous emission~SASE! @1,2#
and amplification of coherent spontaneous radiation s
amplified coherent spontaneous emission~SACSE! @3,4#.
When electron pulse current gradients are sufficiently larg
has been predicted that SACSE can easily dominate
SASE interaction in an FEL amplifier. This dominance h
already been demonstrated experimentally in the Cheren
maser@5#, a device with significant similarities to the FEL
Because the initial radiation source in the FEL SASE regi
arises from noise, the radiation pulse structure following a
plification may also exhibit a large degree of noise. Con
quently, pulse to pulse reproducibility also suffers. In t
SACSE regime, however, the initial radiation source is
termined by the temporal current profile of the electr
pulse. The amplified radiation in SACSE will therefore
intrinsically less noisy and exhibit greater pulse to pulse s
bility @4#. Thus, the SACSE regime of operation may
beneficial to users of short wavelength FELs, where radia
pulse noise and pulse to pulse stability may be an issu
experimental importance.

This paper presents what the authors believe is the
one-dimensional analysis of SACSE in a planar wiggler F
amplifier. The analysis extends previous studies of SAC
that were carried out for helical wiggler configurations on
@3,6,4#. Given the importance of including the effects of CS
in helical wiggler FEL configurations, it would seem time
to investigate the role of CSE in the planar wiggler FE
configuration, particularly as this is the preferred type
wiggler for most of the Compton regime FEL experimen
and user facilities.

In a helical wiggler configuration there is no resonant
diation emission at harmonics of the resonant fundame
radiation frequency along the coaxial radiation-electr
1063-651X/2002/65~4!/046503~10!/$20.00 65 0465
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propagation direction of the wiggler axis@7#. On-axis inter-
action at harmonics may therefore be neglected in the he
wiggler. In contrast, in a planar wiggler configuration, si
nificant on-axis radiation emission at harmonics of the fu
damental may occur and the radiation-electron interactio
these harmonics may not be neglected@7#.

Previous work has calculated the CSE from an elect
pulse traversing a planar wiggler directly from the Lie´nard-
Wiechert potentials@8# . Whereas, this work provides infor
mation of the CSE both on and off axis, it does not descr
the radiation-electron interaction in the self-consistent w
required to describe the stimulated emission due to the F
mechanism.

The evolution of the self-consistent interaction betwe
the electron pulse and the radiation field is described in
paper via the coupled Maxwell-Lorentz equations. The el
trons interact with the radiation and static wiggler field
their position and momentum evolution being described
the Lorentz force equation. The electron motion in the w
gler constitutes a current that acts as a source of the ele
magnetic field, the evolution of which is described by Ma
well’s wave equation. The on-axis harmonic radiation in t
planar wiggler is due to an oscillatory axial ‘‘jitter’’ motion
of the electrons about their mean velocity as they propag
along the wiggler axis@7#.

To date, most analytical studies of the FEL have involv
the averaging of the Maxwell-Lorentz equations over an
terval equal to or greater than one wiggler period@7,9#. This
averaging restricts the resolution of solutions to the syste
evolution to time and spatial scales that are greater than
fundamental radiation period. As SACSE is a process t
can only be described with reference to scales less than
period, the above averaging of the Maxwell-Lorentz equ
tions destroys any information of SACSE in their solution

In the work presented here, no averaging of the Maxw
Lorentz equations is performed, allowing for a more accur
description of the FEL’s evolution by including the effects
SACSE. Because the Maxwell-Lorentz equations are not
eraged, the transverse electron dynamics are described in
ferential form. Furthermore, the radiation is described
rectly via its oscillatory field and not by the field envelope
in the averaged model. The more complex system of eq
tions in this unaveraged model is the price to be paid
obtaining the extra information of sub-radiation perio
SACSE evolution.

The following work begins with the coupled Maxwel
©2002 The American Physical Society03-1
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Lorentz equations from which the working system of equ
tions used to model SACSE in the planar wiggler FEL a
derived in detail. These working equations are scaled us
the same scaling as previous averaged models@7# to allow
for easy comparison. The equations are then solved in
absence of any radiation interaction upon the electron
namics. This allows an expression to be derived for the C
from an arbitrary electron pulse current profile. This expr
sion is then used to investigate and compare the scalin
CSE and spontaneous radiation intensity as a function
frequency. The working equations are then solved num
cally to investigate the radiation/electron interaction into
nonlinear SACSE regime for two different electron pul
current profiles.

II. THE MODEL

In what follows we consider the interaction between
pulse of electrons of mean energyg rmc2, resonant with a
plane, linearly polarized radiation field in a planar wiggl
FEL configuration. The electric field, the wiggler magne
field, and the transverse current density are given, res
tively, as

E~z,t !5 x̂Ex~z,t !5
1

2
x̂(

f 51

`

@Ef~z,t !ei f (k1z2v1t)1c.c.#,

~1!

Bw~z!52 ŷBw sinkwz, ~2!

J'52ec(
j 51

N

b'd„r2r j~ t !…, ~3!

whereN is the total number of electrons in the pulse w
positionsr j (t) and transverse velocityb' , Bw is the wig-
gler magnetic field strength of periodlw52p/kw and the
radiation electric field has been expanded as a sum of c
plex harmonic field envelopes of the fundamental reson
wave vectork152p/l1, where

l15
lw

2g r
2 ~11āw

2 !,

v15ck1, andāw5eBw /A2mckw is the rms wiggler deflec-
tion parameter.

A. Radiation evolution

For such a plane wave interaction the field evolution
described by the wave equation,

S ]2

]z2
2

1

c2

]2

]t2D E5m0

]J'

]t
. ~4!

Substituting for the harmonic sum form of the electric fie
~1!, assuming the electron and radiation pulses have e
cross-sectional areas,s, and taking the scalar product withx̂,
the wave equation~4! may be written:
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S ]2

]z2
2

1

c2

]2

]t2D (f 51

`

@Ef~z,t !ei f (k,z2v,t)1c.c.#5
2

e0c2s

]Jx

]t
.

~5!

where

Jx52ec(
j 51

N

bxd„z2zj~ t !…. ~6!

The wave equation~5! may be rewritten in a more con
venient form by changing to the scaled independent varia
@9#:

z̄52kwrz, z̄15
2kwr

12b̄z

~z2cb̄zt !. ~7!

Herecb̄z5^vz0
& is the initial meanz component of the elec

tron velocity within the interaction region andr is the fun-
damental FEL parameter@1#, defined as

r5
1

g r
S āwvp

4ckw
D 2/3

, ~8!

where vp5(e2np /e0m)1/2 is the plasma frequency for th
peak electron number density of the electron pulse,np . The
left-hand side of wave equation~5! then transforms, using
the independent variables~7!, to

8r2kw
2 b̄z

12b̄z
S ]

] z̄
1

]

] z̄1
D F ]

] z̄1

1
12b̄z

2b̄z

3S ]

] z̄
1

]

] z̄1
D G(

f 51

`

@Ef~ z̄,z̄1!e( i f /2r)( z̄12 z̄)1c.c.#. ~9!

It is easily shown from Eq.~9! that when

12b̄z

2b̄z
U]Ef~ z̄,z̄1!

] z̄
1

]Ef~ z̄,z̄1!

] z̄1
U!U i f

2r
Ef~ z̄,z̄1!1

]Ef~ z̄,z̄1!

] z̄1
U ,

~10!

or equivalently

U]Ef~z,t !

]z
1

]Ef~z,t !

c]t U!U]Ex f~z,t !

c]t U, ~11!

the partial differential term

12b̄z

2b̄z
S ]

] z̄
1

]

] z̄1
D

may be neglected with respect to]/] z̄1 in the second brack-
eted differential term of Eq.~9!. Inequality ~11! is satisfied
when the radiation envelopeEf(z,t) varies slowly as a func-
tion of (z2ct) relative to the radiation field rate of chang
Hence,Ef(z,t)'Ef(z2ct) is a field envelope that does no
change significantly in a radiation period, and conseque
disallows any valid description of a radiation field counte
3-2
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propagating to the electron pulse. This analysis is simila
that of Ref.@10#. With this approximation the wave equatio
~5! may be written as:

]

] z̄1
F S ]

] z̄
1

]

] z̄1
D (

f 51

`

@Ef~ z̄,z̄1!e( i f /2r)( z̄12 z̄)1c.c.#

1
1

2e0csrkw
JxG50. ~12!

The general solution for the bracketed term differentia
with respect toz̄1 in Eq. ~12! is equal to a general function o
z̄ plus a constant. It can be seen from the zero source l
(Jx→0) that both the general function ofz̄ and the constan
must be set equal to zero for energy and momentum con
vation. Thus, the bracketed term differentiated with resp
to z̄1 in Eq. ~12! itself is equal to zero and we obtain

S ]

] z̄
1

]

] z̄1
D Ex~ z̄,z̄1!5

e

2e0mcs

b̄z

12b̄z

3(
j 51

N
px j

g jbz j
d„z̄12 z̄1 j~ z̄!…, ~13!

where we have reverted back to the simple radiation elec
field via Eq.~1!, introduced thex component of the electron
momentapx in the definition of the current density~6! and
transformed the Dirac delta function,

d„z2zj~ t !…52kwr
b̄z

12b̄z

d„z̄12 z̄1 j~ z̄!…

bz j
.

The magnetic component of the electromagnetic field m
be obtained from the Maxwell equation,

]Ex

]z
52

]By

]t
,

which, using the same approximation~11! as used in the
wave equation above, may be written

By5
Ex

c
. ~14!

B. Electron evolution

The equation governing the electron motion in the co
bined wiggler magnetic and electromagnetic fields is the L
entz force equation

dpj

dt
52eS E1

pj

g jm
3BD . ~15!

Substituting for the fields~1!,~2!,~14!, and defining the vari-
ables:

p̄x j5g jbx j , ~16!
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eQj5
12bz j

bz j
, ~17!

e5
12b̄z

b̄z

, ~18!

A5
eEx

A2mcvpAg rr
, ~19!

a5S 2rg r

āw
D 2

, ~20!

the Lorentz equation~15! may be written in the convenien
form

dp̄x j

dz̄
52

āw

A2r
FsinS z̄

2r
D 1eQjaAG , ~21!

dQj

dz̄
52

āw

A2r

p̄x j

11 p̄x j
2

QjF2 sinS z̄

2r
D

1eQj H 3 sinS z̄

2r
D 22aAJ

1e2Qj
2H sinS z̄

2r
D 2aAJ G . ~22!

These equations are exact within the approximation~11! that
allows the electromagnetic component of the magnetic fi
to be written as Eq.~14!. The scaled arrival time of an elec
tron at scaled positionz̄ is given by z̄1 j ( z̄). The equation
governing this variable is found from Eq.~7! to be

dz̄1 j

dz̄
512Qj52rpj , ~23!

where the last equality is introduced to allow comparis
with previous models for CSE in a helical wiggler FEL@3#.
When averaged over a fundamental radiation period, an
the relativistic limit e!1, Eq. ~22! gives rise to the usua
‘‘pendulum equation’’ description of the evolution of an ele
tron in the combined wiggler/radiation field. At the fund
mental frequency (f 51) the ponderomotive potential s
formed has a period inz̄1 of 4pr. Note also that the field
variableA is of the same scaled form as in Ref.@3# when
interpreted as an rms value.

In the absence of the radiation field,A50, the equations
are easily integrable and we obtain the usual solutions fo
electron trajectory in a planar wiggler@7#, which in terms of
the variables used here are

p̄x j5A2āwcosS z̄

2r
D , ~24!
3-3
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eQj5S 12
112āw

2 cos2~ z̄/2r!

g j
2 D 21/2

21

'
112āw

2 cos2~ z̄/2r!

2g j
2

, ~25!

b̄z5
2

p

Ag r
221

g r
EiS 2āw

2

g r
221

D '12
11āw

2

2g r
2

, ~26!

whereEi(x) is the complete elliptic integral of the secon
kind and the latter two approximations are in the relativis
limit g r , j@1.

The equations~21!–~23! are amenable to a perturbatio
expansion in the parametere in the relativistic limit where
e!1. This has been carried out and results of numer
integration of the resultant first order equations ine were
compared with the results of a numerical integration fo
planar wiggler model averaged over a wiggler period, ag
in the relativistic limit and for a constant amplitude radiati
field. Both models are in excellent agreement. One imme
ate approximation that can be made by inspection in
relativistic limit e!1, is the neglect of the last term of Eq
~22!. For the purposes of this paper, little advantage is
rived in reproducing the perturbation expansion and we
Eqs. ~21!–~23! as our working equations for the electro
interaction with the combined radiation/wiggler fields.

C. The scaled coupled model

Introducing the scaling of the previous section into t
wave equation~13! we obtain

S ]

] z̄
1

]

] z̄1
D A~ z̄,z̄1!5

1

n̄i

g r

A2āw
(
j 51

N
p̄x j

11 p̄x j
2

3AeQj~eQj12!d„z̄12 z̄1 j~ z̄!….

~27!

Assuming the relativistic limitg r , j@1 and substituting for
solutions from~24!–~26! we obtain

S ]

] z̄
1

]

] z̄1
D A~ z̄,z̄1!5cosS z̄

2r
D 1

n̄i
(
j 51

N

d„z̄12 z̄1 j~ z̄!….

~28!

This equation describes an electron-radiation coupling
which the radiation field is driven by the transverse mot
of the electrons induced by the wiggler field only, a
changes in energy of the electrons away from resonanc
not affect the strength of the electron coupling to the rad
tion field.

Together, Eqs.~21!–~23! and Eq.~27! form the coupled
set of differential equations describing the self-consist
electron-radiation evolution in a planar wiggler FEL. The
equations are valid under the plane wave and the slo
varying envelope approximation of Eq.~11! or equivalently
Eq. ~14!.
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III. ANALYSIS

A. Coherent spontaneous emission

In the relativistic limit and in the absence of radiatio
fields the trajectory of an electron through the wiggler
found from Eq.~23! and Eqs.~25!,~26! to be

z̄1 j~ z̄!' z̄1 j 022rz sinS z̄

r
D , ~29!

wherez̄1 j 05 z̄1 j ( z̄50), and

z5
āw

2

2~11āw
2 !

. ~30!

Substitution for Eq.~29! into the wave equation~28! al-
lows the equation of the field generated by thej th electron to
be written as

S ]

] z̄
1

]

] z̄1
D Aj~ z̄,z̄1!

5cosS z̄

2r
D 1

n̄i
dS z̄12F z̄1 j 022rz sinS z̄

r
D G D .

~31!

Applying the Laplace transform

Ãj~ z̄,s!5L$Aj~ z̄,z̄1!%5E
0

`

Aj~ z̄,z̄1!e2sz̄1dz̄1 , ~32!

with boundary condition given byAj ( z̄,z̄150)50, yields

dÃj

dz̄
1sÃj5

1

n̄i
cosS z̄

2r
D e2s[ z̄1 j 022rz sin(z̄/r)] . ~33!

This equation may be solved with the initial conditio
Ãj ( z̄50,s)50, to obtain

Ãj~ z̄,s!5 (
f .0,odd

`

Ãj f ~ z̄,s!, ~34!

where

Ãj f ~ z̄,s!52
ir

n̄i
@ g̃2~s!~ei ( f z̄/2r)2e2sz̄!2g̃1~s!~e2 i ( f z̄/2r)

2e2sz̄!#e2sz̄1 j 0, ~35!

and

g̃6~s!5~21!( f 21)/2

3
@J( f 21)/2~7 i2rzs!2J( f 11)/2~7 i2rzs!#

f 6 i2rs
.

3-4
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In deriving this result the following Bessel function identitie
were required:

eia sin x5 (
k52`

`

Jk~a!eikx, J2n~a!5~21!nJn~a!,

Jn~2a!5~21!nJn~a!.

The expression~35! is the Laplace transform of thef th ~odd!
harmonic contribution to the field from thej th electron. The
derivation of the final result is assisted by now calculat
Ãf—the Laplace transform of thef th ~odd! harmonic contri-
bution to the field for the sum of the entire distribution ofN

electrons in an electron pulse of scaled duration inz̄1 of l̄ e
52rvDte , whereDte is the temporal duration of the pulse
We begin by describing theN electrons by a continuou
charge distribution. In the limit of a continuous charge d
tribution, z̄1 j 0 is replaced by the dummy variablez̄18 and the
sum over theN electrons may be replaced by the integ
over the charge weight functionx( z̄18)5I ( z̄50,z̄18)/I pk ,

whereI ( z̄50,z̄18) is the electron pulse current with maximu
value I pk on entering the wiggler. Hence, the sum of t
discrete electron model becomes

1

n̄i
(
j 51

N

~••• !→E
0

`

x~ z̄18!~••• !dz̄18

in the continuous charge distribution limit, the lower limit o
the integral being zero asz̄1 j 0>0 ; j .

In this way we obtain

Ãf5 ir@ g̃1~s!~e2 i ( f z̄/2r)2e2sz̄!2g̃2~s!~ei ( f z̄/2r)

2e2sz̄!#E
0

`

x~ z̄18!e2sz̄18dz̄18 . ~36!

Note that the integral term is simplyL$x( z̄1)%, the Laplace
transform of the charge weight functionx( z̄1). The Laplace
transform convolution theorem

L 21$ f̃ ~s!g̃~s!%5E
0

z̄1
f ~u!g~ z̄12u!du ~37!

may now be applied to Eq.~36! by associating the function
g̃6(s) with g̃(s) in Eq. ~37! and noting the simple poles o
g̃6(s) for inversion. Using the Laplace shifting theorem

L 21
ˆe2sz̄L$x~ z̄1!%‰5x~ z̄12 z̄!H~ z̄12 z̄!,

where H(x) is the Heaviside function, allows thef th odd
harmonic field component to be written as

Af~ z̄,z̄1!5rJfFe2 i [ f ( z̄12 z̄)/2r]E
( z̄12 z̄)/2r

z̄1/2r
ei f ux~u!du1c.c.G ,

~38!

where the transformu→2ru has been made in Eq.~37! and
04650
-

l

Jf5~21!( f 21)/2@J( f 21)/2~ f z!2J( f 11)/2~ f z!#.

Finally, the total scaled radiation field is obtained by su
ming over all odd harmonic contributions

A~ z̄,z̄1!5 (
f .0,odd

Af~ z̄,z̄1!.

Note from Eq.~7! for the definitions ofz̄ and z̄1, that for
a given electron pulse shape and width, the limits of
integral in Eq. ~38! are r independent, so thatuAf u2}r2.
Hence, from the scaling~8! and ~19!, the unscaled radiation
intensity for thef th harmonic is proportional to the square
the electron beam density, i.e., the harmonic CSE is supe
diant @9#.

The field ~38! is similar in form to that of CSE from a
helical wiggler@3# for the fundamental frequency,f 51. The
main difference being the Bessel function factorJf , familiar
to planar wiggler FEL theory@7# and describing the reduce
coupling of the radiation field to the electrons due to t
latters’ axial oscillatory motion as described by Eq.~29!. The
exponent of the exponential term outside the integral in
scaled variables is simply the harmonic field’s phas
2 i f (k1z2v1t). It should be noted that the Bessel functio
factor Jf arises in previous theory as a consequence of
eraging the equations over a wiggler period. However,
such averaging was performed here.

A radiation wave front propagates relative to the electr
pulse with a scaled velocitydz̄1 /dz̄51. Hence, at a scaled
position z̄ and time z̄1, only those regions of the electro
pulse that lie within the interval inz̄1 betweenz̄1 and z̄1

2 z̄ may contribute to the radiation field. This is the physic
reason for the limits of the integral over the charge weig
functionx(u) in Eq. ~38!. If these limits are incorporated a
a difference of Heaviside functions within the integral, as
Ref. @3#, then the integral may be written as a Fourier tran
form of the product ofx(u) with the difference of Heaviside
functions. Forl̄ e, z̄1, z̄, then the integral is simply the Fou
rier transform of the charge weight functionx(u).

For example, in this latter region, and for a rectangu
charge weight function:

x~ z̄1!51 for 0, z̄1, l̄ e

50 otherwise, ~39!

the harmonic field component

Af~ z̄,z̄1!5
2r

f
JfFsinS f ~ z̄12 z̄!

2r
D 2sinS f ~ z̄12 z̄2 l e!

2r
D G .

~40!

The factor 1/f may be attributed to the electron pulse appe
ing effectively f times longer to the harmonic than to th
fundamental frequency. Hence, the Fourier components
the pulse weighting functionx(u) driving the harmonic field
are reduced. It is easily shown that this scaling also app
outside the intervall̄ e, z̄1, z̄. The total scaled fieldA is
3-5
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plotted for a rectangular charge weight function of sca
duration l̄ e53.2 at scaled positionz̄55.8 over the entire
range 0, z̄1, l̄ e1 z̄ in Fig. 1.

Similarly, in the regionl̄ e, z̄1, z̄, for a parabolic charge
weight function defined by

x~ z̄1!52
4

l̄ e
2
z̄1~ z̄12 l̄ e! for 0, z̄1, l̄ e

50 otherwise, ~41!

the scaled harmonic field is given by

Af~ z̄,z̄1!52
16r2

f 2 l̄ e

JfFcosS f ~ z̄12 z̄2 l e!

2r
D 1cosS f ~ z̄12 z̄!

2r
D G .

~42!

In deriving Eq. ~42! it has been assumed that the electr
pulse length is sufficiently long, i.e.,l̄ e@4pr/ f . This rela-
tion holds for electron pulse lengths significantly longer th
a radiation period.

A relative measure of harmonic intensity is obtained fro
the ratioRf5I f /I 1 where I f is the intensity of thef th har-
monic. For the rectangular charge weight distribution of E
~39! and for given values ofr and āw then from Eq.~40!

Rf
CSE~rectangular!5

J f
2

f 2J1
2

. ~43!

Similarly, from equation~42! for a parabolic charge weigh
distribution

Rf
CSE~parabolic!5

J f
2

f 4J1
2

. ~44!

An equivalent expression may be obtained for sponta
ous emission due to shot noise, and which is valid for a
pulse charge weight distribution,

FIG. 1. The scaled field amplitudeA plotted as a function ofz̄1

for a rectangular charge weight functionx( z̄1) and for parameters

āw51, r50.0796, l̄ e53.2, andz̄55.8.
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f 2J f
2

J 1
2

. ~45!

The latter expression has been derived from the expres
for the on-axis spontaneous shot noise photon flux at thef th
harmonicS̃f @11#,

d2S̃f

dfdc
5

s

\v f

d2I f

dfdc
5aNw

2 g r
2Dv

v

I

e
F f~ āw!, ~46!

wheref and c are the vertical and horizontal angles fro
the wiggler axis,a is the fine structure constant,Nw is the
number of wiggler periods,Dv/v51/f Nw is the fractional
linewidth, I is the electron beam current, and

F f~ āw!5
2āw

2 f 2

~11āw
2 !2

J f
2 .

The relative intensities for both CSE, from a rectangu
and a parabolic pulse, and spontaneous shot noise emis
are plotted in Fig. 2 as a function of harmonic numberf for a
wiggler deflection parameterāw51. It is seen that the rela
tive intensity of CSE decreases significantly more rapi
than spontaneous shot noise with increasing harmonic n
ber, and that CSE of the parabolic decreases more rap
than the rectangular.

B. Self-amplified coherent spontaneous emission

The full set of coupled equations~21!–~23! and Eq.~27!
are now solved self-consistently into the nonlinear regi
and demonstrate that CSE may be amplified as it propag
through the electron pulse—self-amplified coherent spon
neous emission. Such an analysis has previously been ca
out for a helical wiggler configuration@3# where only the

FIG. 2. The relative radiation intensitiesRf plotted as a function

of harmonic numberf for āw51. s, Shot noise;Ã, a rectangular
charge weight function; and¿, a parabolic charge weight function
3-6
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fundamental frequency of the radiation field is present a
there is no axial jitter motion of the electrons. This allows t
radiation field to be described by a complex pulse envelo
The streamline method of finite element analysis@12# was
used to model the evolution of the radiation pulse inz̄1, with
iteration forward inz̄ being governed by a Crank-Nicolso
scheme@13#. The radiation pulse was driven self-consisten
by the electrons whose dynamical equations in the prese
of the radiation pulse were solved by a Runge-Kutta routi

The method used to solve the system of equations~21!–
~23! and Eq.~27! describing the planar wiggler is essentia
the same, except the solutions for a real~scaled! radiation
field, not a complex envelope, and the transverse dynam
of the electrons must also be modeled via the equations
px .

Two sample solutions are now presented. The first is fo
rectangular electron charge weight function, as described
Eq. ~39! of the previous section, and the second is fo
parabolic charge weight function given by Eq.~41!.

In Figs. 3 and 4 the scaled radiation field amplitudeA, the
log of the scaled power spectrumP, and the modulus of the

FIG. 3. The scaled fieldA as a function ofz̄1; the scaled power
spectrumP as a function of the scaled radiation frequencyf; and the

bunching parameterubu as a function ofz̄1 for a rectangular charge

weight distribution functionx( z̄1). The scaled distance through th

wiggler is z̄52 and āw52, g r5100, r51022, l̄ e540 and the
total electron pulse charge isQ52 nC. The relative radiation inten-
sitiesRf are plotted in the scaled power spectrumP as a function of
harmonic numberf for: s, Shot noise;Ã, CSE.
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charge weighted bunching parameterubu are plotted at two
scaled interaction distancesz̄52 andz̄525 through a planar
wiggler interaction region for a rectangular electron cha
weight functionx( z̄1). The parameters used for this simul
tion were: āw52, g r5100, r51022, l̄ e540, total elec-
tron pulse charge ofQ52 nC, and initial field amplitude
A( z̄50,z̄1)50. Shot noise, associated with the random el
tron distribution, was included in the model via the meth
described in Ref.@14# so that both noise and CSE sourc
were available for amplification. The bunching parameteb
is similar to the bunching parameter as defined in previ
averaged models@7# and is defined as

b~ z̄,z̄1!5

(
z̄1 j PG

x je
iz̄1 j /2r

(
z̄1 j PG

x j

whereG defines an interval inz̄1 of one ponderomotive pe
riod at the fundamental frequency:z̄122pr, z̄1, z̄112pr

FIG. 4. The scaled fieldA as a function ofz̄1; the scaled power
spectrumP as a function of the scaled radiation frequencyf; and the

bunching parameterubu as a function ofz̄1 for a rectangular charge

weight distribution functionx( z̄1). The scaled distance through th

wiggler is z̄525 andāw52, g r5100, r51022, l̄ e540 and the
total electron pulse charge isQ52 nC. The relative radiation inten-
sitiesRf are plotted in the scaled power spectrumP as a function of
harmonic numberf for: s, Shot noise;Ã, CSE.
3-7
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and x j5x( z̄1 j 0). The parameterf 5v/v1 is the radiation
frequency scaled with respect to the fundamental. For e

trons distributed at the same position withinG, z̄1 j

5 constant; j and ubu51. Conversely, for a uniform distri
bution of electrons within the intervalG, ubu50. Henceubu
is bounded by the interval 0,ubu,1.

In Fig. 3, at z̄52, it is seen that there has been litt
evolution of the field,A, except for the emission of CSE
~Note that, unlike Fig. 1, the periodic oscillations of the fie
are unable to be resolved in this plot, the period being
proximately that of a ponderomotive potential 4pr'0.13.
The solid shaded areas of the plot therefore delineate
envelope containing the field oscillations.! In the plot of the
bunching parameter it is seen thatubu→1 as the intervalG
passes through the electron pulse edges atz̄150 and z̄1
540. This occurs when the intervalG spans the electron
pulse edge, only a fraction of the intervalG is populated by
electrons. This nonuniform distribution inG results in a
bunching ubu.0, which, together with the large charg
weight associated with a rectangular pulse~39!, gives a large
current gradient that is the source of the CSE. The sca
distance ofz̄52 through the wiggler is relatively short wit
respect to the FEL instability and little radiation amplific
tion or electron bunching induced by the FEL interaction h
occurred. Hence, the CSE has not yet been amplified and
numerically calculated field is in very good agreement w
the analytical analysis of the previous section. Note t
there is a small contribution from the shot noise, which
apparent from a small noise signal in the field between
, z̄1,40. The dominance of the CSE contribution over th
of shot noise is confirmed from the scaled power spectr
where the harmonic intensity ratios,Rf5I f /I 1, for both CSE
and spontaneous scaling as given by equations~43! and~45!
are also plotted. HereI 1 is that measured from the peak valu
of the scaled power spectrum atf 51. The peak values in the
scaled power spectrum at the odd harmonics clearly con
with the CSE scaling. It can be seen from the plot for t
field, A, that temporal structures exist on a scale significan
longer than that of the fundamental radiation period. This
also apparent from the plot of the scaled power spect
where there exist significant contributions to the spectr
for f ,1. This coherent emission at frequencies lower th
the fundamental,f 51 is to be expected: in the limit wher
the radiation period is significantly greater than the elect
pulse duration, the electron pulse appears pointlike and
electrons emit coherently at that frequency@8#.

Figure 4 plots the same parameters as above for a gre
distance through the wiggler,z̄525. The initial fields gener-
ated via shot noise and CSE have now grown significantly
has the electron bunchingubu throughout the body of the
electron pulse. The dominant feature of the radiation field
the presence of a large spike forz̄1'22. This feature has als
been predicted in helical wiggler FELs@3,4# and has been
experimentally observed in a Cherenkov maser source@5#,
which has many similarities theoretically to the FEL. T
origin of the spike, which is superradiant in nature@9#, is in
CSE emitted from the rear of the electron pulse, aroundz̄1
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50, where the current gradient is large~see above!. This
radiation then propagates through the electrons being am
fied and narrowing in width as it does so. Accordingly, th
emission has been called SACSE@3#. A notable feature of the
scaled power spectrum is the retention of the CSE scalin
the harmonic intensity ratiosRf well into the nonlinear re-
gime.

The simulation for the parabolic charge weight functi
uses identical parameters to those of the rectangular ab
The following plots the same information as the rectangu
case. As with this case, it can be seen from Fig. 5 that at
beginning of the interaction, atz̄52, there are tempora
structures present in the scaled fieldA with period signifi-
cantly longer than the radiation period. This again manife
itself with significant power present in the scaled spectrum
frequencies below the fundamental (f ,1). There is no no-
table presence of any CSE, however, and higher freque
emission appears mainly in the form of shot noise. It is ea
shown from Eqs.~40! and ~42! that the fundamental CSE
intensity from the parabolic pulse is a factor (8r/ f l̄ e)

2'4

FIG. 5. The scaled fieldA as a function ofz̄1; the scaled power
spectrumP as a function of the scaled radiation frequencyf; and the

bunching parameterubu as a function ofz̄1 for a parabolic charge

weight distribution functionx( z̄1). The scaled distance through th

wiggler is z̄52 and āw52, g r5100, r51022, l̄ e540 and the
total electron pulse charge isQ52 nC. The relative radiation inten-
sitiesRf are plotted in the scaled power spectrumP as a function of
harmonic numberf for: s, Shot noise;¿, CSE.
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31026 smaller than from the rectangular pulse. The dom
nance of the shot noise over CSE is confirmed from
scaled power spectrum, with harmonic power ratiosRf con-
forming to the spontaneous shot-noise scaling~45!. Al-
though, as with the rectangular pulse, the bunching par
eter ubu is large at the pulse edges, the charge weight
function here is small. In changing from a rectangular to
parabolic charge distribution function, therefore, the curr
gradients that drive CSE have been reduced so that
noise becomes the dominant emission process.

Plots of the same parameters into the nonlinear regim
z̄525 show from Fig. 6 that a spiking behavior in the rad
tion field is beginning to form in a way similar to the case
a rectangular charge weight function of Fig. 4. Perhaps
most significant point to note is the transition of the h
monic power ratiosRf from that of shot-noise scaling~45! to
a scaling more like that of CSE~44!. Analytic analysis of the
equations governing the radiation/electron interaction i
the nonlinear regime is not trivial and the scaling expec
for Rf in this regime has not been derived. The nonline
regime scaling clearly depends on other factors though, s

FIG. 6. The scaled fieldA as a function ofz̄1; the scaled power
spectrumP as a function of the scaled radiation frequencyf; and the

bunching parameterubu as a function ofz̄1 for a parabolic charge

weight distribution functionx( z̄1). The scaled distance through th

wiggler is z̄525 andāw52, g r5100, r51022, l̄ e540 and the
total electron pulse charge isQ52 nC. The relative radiation inten-
sitiesRf are plotted in the scaled power spectrumP as a function of
harmonic numberf for: s, Shot noise;¿, CSE.
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as differing harmonic growth rates, at least in the linear
gime @7#. The CSE-like scaling~44!, resulting from the nu-
merical analysis, however, suggests that the mechanisms
lead to CSE may also play an important role in the nonlin
regime of SACSE.

IV. CONCLUSIONS

Analytical and numerical studies of CSE and its ampl
cation ~SACSE! in a planar wiggler FEL in the one
dimensional~1D! plane wave limit have been presented. Th
is, to the authors’ knowledge, the first such analysis fo
planar wiggler FEL. The main difference between the pla
and helical FEL amplifiers is the resonant on-axis harmo
radiation emission and amplification present in the pla
wiggler and absent in the helical. In deriving the results,
averaging of either the wave equation or the equations g
erning the electrons’ dynamics was performed as such a
aging destroys CSE effects in the analysis. In the unavera
equations the axial electron ‘‘jitter’’ motion associated wi
planar wigglers, and responsible for the on-axis harmo
emission, is allowed to evolve self-consistently with the
diation. This requires an extra differential equation, for t
transverse momentum of each electron, above those of
averaged model.

Within the 1D plane wave assumptions, only one appro
mation was made in the derivation of the working equatio
This may be written in the convenient form that relates
radiation magnetic field only to its electric field:By5Ex /c.
This approximation is equivalent to the SVEA, i.e., that t
radiation field envelope copropagating with the electr
pulse may not change significantly in one radiation perio

The analysis of the wave equation in the presence o
noninteracting electron pulse gave a useful expression for
CSE field. It is worth remarking that from this analys
emerged the difference of Bessel functions factor, familiar
previous averaged planar wiggler models where it ari
from the averaging process itself. It has been shown h
therefore, that the difference of Bessel functions factor is
a product of the averaging process but occurs at a more
damental level. The analysis has shown that CSE pow
decrease at a significantly higher rate with increasing h
monic number than those powers due to spontaneous s
noise radiation. This is of no great surprise when one c
siders that it is the change in the pulse current ove
wavelength that acts as a source of the CSE. The higher
harmonic, the smaller the change in current over its per
and hence the smaller the source term driving the CSE at
harmonic.

It is remarkable that the same relative scaling of the h
monic powers persists well into the nonlinear regime.
would also appear that the CSE scaling occurs in the non
ear regime independently of whether the greater source
tribution is CSE or shot noise at the beginning of the int
action. This is perhaps indicative that the mechanisms
give rise to CSE retain their importance in the nonline
regime and warrants further investigation.

Other attributes of planar wiggler SACSE have ma
similarities to those of a helical wiggler. Planar wiggl
3-9
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SACSE is superradiant and pulses of CSE generated tow
the rear of the electron pulse may propagate through it be
amplified and forming a spike of radiation with intensi
much greater than the saturation intensity predicted by
steady-state~cw! limit.

One of the great potential benefits of CSE is that it off
the possibility of a seed field with powers significant
greater than those due to shot noise. A further beneficial
ference of CSE over shot noise is that the CSE radia
pulse structure may be predetermined by suitably preform
the electron pulse current. The SACSE will then form a w
defined amplified pulse with a reproducibility determined
that of the electron pulse current as it enters the wiggler. T
method offers a possible solution to the problem of pulse
pulse reproducibility in short wavelength FELs. The key
such a successful scheme is in preforming the electron p
with sufficient current gradients so that CSE dominates s
noise. For example, it may be possible to make the elec
pulse undergo a FEL interaction at an intermediate stag
their acceleration to high energy. This interaction would p
n.
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tially bunch the electrons at the intermediate energy reson
wavelength where there would be conventional laser sou
to provide a well defined, intense seed field.~One would
probably wish to limit this process by maximizing the rat
of bunching to energy spread,ubu/^g&, so induced. One can
also envisage schemes that would bunch and then ‘‘cool’’
electrons at this intermediate stage.! Further acceleration o
the electron pulse will increase the resonant frequency o
final wiggler stage. In this wiggler the electron pulse curre
would have periodic modulations induced by the previo
lower energy FEL interaction. Although these modulatio
would be at a frequency below that of the resonant radiat
they may nevertheless act as a well defined source of C
with an intensity above that of the shot noise.
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